Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides.

نویسندگان

  • Samuel T Coradetti
  • Dominic Pinel
  • Gina Geiselman
  • Masakazu Ito
  • Stephen Mondo
  • Morgann C Reilly
  • Ya-Fang Cheng
  • Stefan Bauer
  • Igor Grigoriev
  • John M Gladden
  • Blake A Simmons
  • Rachel Brem
  • Adam P Arkin
  • Jeffrey M Skerker
چکیده

The basidiomycete yeast Rhodosporidium toruloides (a.k.a. Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome sequence of the oleaginous red yeast Rhodosporidium toruloides MTCC 457.

We report the de novo assembled 20.05-Mb draft genome of the red yeast Rhodosporidium toruloides MTCC 457, predicted to encode 5,993 proteins, 4 rRNAs, and 125 tRNAs. Proteins known to be unique to oleaginous fungi are present among the predicted proteins. The genome sequence will be valuable for molecular genetic analysis and manipulation of lipid accumulation in this yeast and for developing ...

متن کامل

Dynamics of the lipid droplet proteome of the Oleaginous yeast rhodosporidium toruloides.

Lipid droplets (LDs) are ubiquitous organelles that serve as a neutral lipid reservoir and a hub for lipid metabolism. Manipulating LD formation, evolution, and mobilization in oleaginous species may lead to the production of fatty acid-derived biofuels and chemicals. However, key factors regulating LD dynamics remain poorly characterized. Here we purified the LDs and identified LD-associated p...

متن کامل

The Production, Regulation and Extraction of Carotenoids from Rhodosporidium toruloides

Carotenoids are valuable pigments of commercial interest for various health benefits. There is rising demand for natural carotenoids from microorganisms, although the majority of industrially produced carotenoids are currently chemically synthesized. Rhodosporidium toruloides is oleaginous red yeast, which can produce large amounts of carotenoids and lipids simultaneously. It is also able to as...

متن کامل

Single Cell Oil Producing Yeasts Lipomyces starkeyi and Rhodosporidium toruloides: Selection of Extraction Strategies and Biodiesel Property Prediction

Single cell oils (SCOs) are considered potential raw material for the production of biodiesel. Rhodosporidium sp. and Lipomyces sp. are good candidates for SCO production. Lipid extractability differs according to yeast species and literature on the most suitable method for each oleaginous yeast species is scarce. This work aimed to investigate the efficiency of the most cited strategies for ex...

متن کامل

Corrigendum: A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides

Triacylglycerols are among the most attractive alternative raw materials for biofuel development. Current oil plant-based technologies are limited in terms of triacylglycerol production capacity and rate. These limitations may be circumvented by biotransformation of carbohydrates into lipids; however, our understanding of microbial oleaginicity remains limited. Here we present the results of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • eLife

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2018